注册并扫描二维码
免费送会刊
科技前沿

复合材料英文经典著作(二十三)《复合材料微观力学》
来源:武汉理工王继辉教授课题组  2017-03-30 14:21:03
本文阅读次数:789

原文:http://www.chinacompositesexpo.com/cn/news.php?show=detail&c_id=288&news_id=4589
作者:Jacob Aboudi, Steven M. Arnold, Brett A. Bednarcyk
出版社:Butterworh-Heinemann, 2013


 
 
  

 
前言
 
        本书详细阐述了统一化的多相复合材料的微观力学理论体系,该理论体系综合了科研工作者在过去30年里所取得的成果。这些理论不仅适用于具有周期性微观结构的复合材料,同样适用于具有非周期性(有界的)微观结构的复合材料。这些理论的独特性和重要性在于不仅能描述复合材料的宏观等效性能,还能描述组分材料内部的物理场的局部变化,因此有助于模拟复合材料局部的非线性现象如损伤和非弹性,这是预测复合材料失效和使用寿命的关键。此外,由于这些理论可以为多相复合材料建立宏观、非线性、各向异性本构关系,因此适合合并到材料的多尺度分析中去。任何更高尺度的方法或模型都可以将这些理论作为有效的本构方程来调用以获取复合材料结构中的局部非线性响应,并随时重新获取任一点的物理场。因此,这种微观/宏观结构的分析能力是独特的,且得益于微观力学理论自身的计算效率,实现起来十分便利。此外,非周期结构的微观力学理论,将宏观尺度和微观尺度显性地结合起来,可以同时分析单元不重复的问题。
 
        本文阐述的统一化微观力学方法,其另外一个特点是易于推广到解决先进复合材料相关的技术问题。如复合材料(1)承受有限大变形,(2)受动力冲击,(3)智能结构组成成分(电磁热弹性体、电致伸缩器和形状记忆合金),(4)展现完整(双向)热机耦合。大多数复合材料的相关书籍,重点关注宏观力学方法,而对非线性问题,尤其是以上研究课题基本没有提供解决方法,因此,作者认为本书填补了这些空白。
 
        本书由三位作者历时几年完稿,主要工作是由第一作者在每年对位于俄亥俄州克利夫兰市的美国宇航局格林研究中心的访问期间完成。本书突出了过去二十年里,在发展和应用这些理论时所取得的经验教训。所以,我们希望统一化的多尺度方法能够帮助材料科学家、研究人员、工程师以及结构设计师更好地理解复合材料在各个尺度下的力学性能,以助于更充分地发挥复合材料的潜能。本书更多相关资料请参见网址:http://booksite.elsevire.com/9780123970350/. 密码“Solutions”.
 
作者简介
 
Jacob Aboudi 任职以色列特拉维夫大学机械工程学院的荣誉教授,曾任该校固体力学系,材料与结构系主任及工程学院院长。Jacob Aboudi 教授曾受邀访问斯特拉斯克莱德大学、西北大学、弗吉尼亚理工学院以及弗吉尼亚大学。在40多年的学术生涯中,Jacob Aboudi 教授共发表了250多篇期刊论文,编著了两本专著。
 
Steven M.Arnold 任职位于俄亥俄州的美国宇航局格林研究中心结构与材料分部力学与寿命预测系主任,美国宇航局多尺度分析中心的共同创始人兼主管,是Abe Silverstein 奖的获得者,同时也是材料数据管理协会的共同创始人兼现任会长。他从事科研工作超过25年,发表了300余篇科技论文,并拥有两项美国专利。
 
Breet A.Bednarcyk 任职美国宇航局格林研究中心结构与材料部门力学与寿命预测系高级研究员以及分析与计算力学学科带头人,从事科研工作超过15年,发表了140篇科技论文,同时也是美国宇航局MAC/GMC软件的主要开发者。
目录
 
Preface
Acknowledgements
Acronyms
 
Chapter 1 Introduction
1.1 Fundamentals of Composite Materials and Structures
1.2 Modeling of Composites
1.3 Description of the Book Layout
1.4 Suggestions on How to Use the Book
 
Chapter 2  Constituent Material Modeling
2.1 Reversible Models
2.2 Irreversible Deformation Models
2.3 Damage/Life Models
2.4 Concluding Remarks
 
Chapter 3 Fundamentals of the Materianic of Multiphase Materials
3.1 Introduction of Scales and Homogenization/Localization
3.2 Macromechanics versus Micromechanics
3.3 Representative Volume Elements(RVEs)and Repeating Unit Cells(RUCs)
3.4 Volume Averaging
3.5 Homogeneous Boundary Conditions
3.6 Average Strain Theorem
3.7 Average Stress Theorem
3.8 Determination of Effective Properties
3.9 Mechanics of Composite Materials
3.10 Comparison of Various Micromechanics Methods for Continuous Reinforcement
3.11 Levin's Theorem: Extraction of Effective CTE from Mechanical Effective Properties
3.12 The Self-Consistent Scheme(SCS)and Mori-Tanaka(MT)Method for Inelastic Composites
3.13 Concluding Remarks
 
Chapter 4 The Method of Cells Micromechanics
4.1 The MOC for Continuously Fiber-Reinforced Materials(Doubly Periodic)
4.2 The Method of Cells for Discontinuously Fiber-Reinforced Composites(Triply Periodic)
4.3 Application: Unidirectional Continuously Reinforced Composites
4.4 Applications: Discontinuously Reinforced(Short-Fiber)Composites
4.5 Applications: Randomly Reinforced Materials
4.6 Concluding Remarks
 
Chapter 5 The Generalized Method of Cells Micromechanics
5.1 GMC for Discontinuous Reinforced Composites(Triple Periodicity)
5.2 Specialization of GMC to Continuously Reinforced Composite (Double Periodicity)
5.3 Applications
5.4 Concluding Remarks
 
Chapter 6 The High-Fidelity Generalized Method of Cells Micromechanics
6.1 Three-Dimensional (Triply Periodic) High-Fidelity Generalized
6.2 Specialization to Double Periodicity (for Continuous Fibers, Anisotropic Constituents, and Imperfect Bonding)
6.3 Reformulation of the Two-Dimensional (Doubly Periodic) HFGMC with Debonding and Inelasticity
6.4 Contrast Between HFGMC and Finite Element Analysis (FEA)
6.5 Isoparametric Subcell Generalization
6.6 Doubly Periodic HFGMC Application
6.7 Triply Periodic Application
6.8 Concluding Remarks
 
Chapter 7 Multiscale Modeling of Composite
7.1 Introduction
7.2 Multiscale Analysis Using Lamination Theory
7.3 HyperMAC
7.4 Multiscale Generalized Method of Cells (MSGMC)
7.5 FEAMAC
7.6 Concluding Remarks
 
Chapter 8 Fully Coupled Thermomicromechanical Analysis of Multiphase Composite
8.1 Introduction
8.2 Classical Thermomicromechanical Analysis
8.3 Fully Coupled Thermomicromechanical Analysis
8.4 Application
8.5 Concluding Remarks
 
Chapter 9 Finite Strain Micromechanical Modeling of Multiphase Composite
9.1 Introduction
9.2 Finite Strain Generalized Method of Cells (FSGMC)
9.3 Application Utilizing FSGMC
9.4 Finite Strain High-Fidelity Generalized Method of Cells (FSHFGMC) for Thermoelastic Composite
9.5 Application Utilizing FSHFGMC
9.6 Concluding Remarks
 
Chapter 10 Micromechanical Analysis of Smart Composite Materials
10.1 Introduction
10.2 Electro-Magneto-Thermo-Elastic Composite
10.3 Hysteresis Behavior of Ferroelectric Fiber Composite
10.4 The Response of Electrostrictive Composite
10.5 Analysis of Magnetostrictive Composite
10.6 Nonlinear Electro-Magneto-Thermo-Elastic Composite
10.7 Shape Memory Alloy Fiber Composites
10.8 Shape Memory Alloy Fiber Composites Undergoing Large Deformations
10.9 Applications
10.10 Concluding Remarks
 
Chapter 11 Higher-Order Theory for Functionally Graded Material
11.1 Background and Motivation
11.2 Generalized Three-Directional HOTFGM
11.3 Specialization of the Higher-Order Theory
11.4 Higher-Order Theory for Cylindrical Functionally Graded Materials (HOTCFGM)
11.5 HOTFGM Application
11.6 HOTCFGM Application
11.7 Concluding Remarks
 
Chapter 12 Wave Propagation in Multiphase and Porus Materials
12.1 Full Three-Dimensional Theory
12.2 Specialization to Two-Dimensional Theory for Thermoelastic Materials
12.3 The Inclusion of Inelastic Effects
12.4 Two-Dimensional Wave Propagation with Full Thermoelastic Coupling
12.5 Applications
12.6 Concluding Remarks
 
Chapter 13 Micromechanics Software
13.1 Accessing the Software
13.2 Method of Cells Source Code
13.3 MAC/GMC 4.0
13.4 Concluding Remarks
 
References
index
 
文章来源:http://www.chinacompositesexpo.com/cn/news.php?show=detail&c_id=288&news_id=4589