注册并扫描二维码
免费送会刊
科技前沿

复合材料英文经典著作(二十一)《复合材料科学与工程》
来源:武汉理工王继辉教授课题组  2017-02-28 08:56:04
本文阅读次数:588

原文:http://www.chinacompositesexpo.com/cn/news.php?show=detail&c_id=288&news_id=4452

  作者:Krishan K. Chawla
出版社:Springer
出版日期:2012年9月27日,第三版

       

  第三版前言
本书自第二版出版以来,复合材料学术界及工业界已经进步显著。在工业领域,航空航天公司(主要是波音和空中客车公司)已经大规模使用的复合材料。确切的说,波音787飞机中广泛使用了碳纤维/环氧树脂复合材料,空中客车公司A 380飞机也使用了大量的复合材料,这表明一种材料选用思维模式的转变。复合材料已应用于波音787的机身、舷窗、机翼、尾翼和稳压翼等,复合材料的用量已占飞机重量的50%。需要指出的是,复合材料在飞机上的广泛使用只是上世纪60年代中期以来复合材料一系列创新性应用的代表。除了航空航天工业中的大规模应用外,复合材料在其他领域的应用也迅速的发展,如汽车、体育用品和超导等领域。

新版本中收录了随着人类活动的增加所出现的大量新型复合材料。这些新型复合材料包括:碳/碳刹车片、纳米复合材料、生物复合材料、自修复复合材料、自增强复合材料、纤维/金属复合材料、民用飞机复合材料、飞机喷气发动机复合材料、第二代高温超导复合材料、WC /金属颗粒复合材料,相关的问题处在不断产生和解决的过程中。此外,本书增加了一章:特种复合材料。这一章介绍了许多特种复合材料,如纳米复合材料(聚合物、金属和陶瓷基体)、自修复复合材料、自增强复合材料、生物复合材料以及双向编织层合板。
需要注意的是,书中所包含的内容超出了常规一学期的课程教学内容。授课者可根据教学安排对内容进行删减。本书的一个远大目标是成为研究员、科学家和工程师的必备参考书。

最后,非常感谢美国国家自然科学基金委、海军研究办公室、联邦运输管理局、洛斯阿拉莫斯国家实验室、桑迪亚国家实验室、橡树岭国家实验室、Smith国际公司和Trelleborg公司多年来对我研究工作的支持, 其中的一些工作已包括在本书中。多年来,在我有幸与之合作的人中,一些人对我的生活、职业产生了深刻的影响。我将牢记他们,下面按字母顺序列出他们的名字:C.H. Barham, A.R. Boccaccini, K. Carlisle, K. Chawla,N. Chawla, X. Deng, Z. Fang, M.E. Fine, S.G. Fishman, G. Gladysz, A. Goel,N. Gupta, the late B. Ilschner, M. Koopman, R.R. Kulkarni, B.A. MacDonald,A. Mortensen, B. Patel, B.R. Patterson, P.D. Portella, J.M. Rigsbee, P. Rohatgi,H. Schneider, N.S. Stoloff, Y.-L. Shen, S. Suresh, Z.R. Xu, U. Vaidya, and A.K. Vasudevan.感谢Kanika Chawla 和S. Patel对本书中采用数据的校核。感谢我的妻子Nivi,谢谢她的陪伴。最后,特别感谢我的父母,Manohar L.和Sumitra Chawla,谢谢他们的关心和支持。

Birmingham,AL,USA          Krishan K.Chawla
March,2011

  作者介绍
Krishan K. Chawla教授在贝拿勒斯印度大学获得学士学位,在伊利诺伊大学香槟分校获得硕士和博士学位。他曾在巴西军事工程研究所、伊利诺伊大学香槟分校、西北大学、加拿大拉尔瓦大学、瑞士洛桑联邦理工、墨西哥新矿业技术研究所(NMIMT)、亚利桑那州立大学、德国科隆航空航天研究所(DLR)、洛斯阿拉莫斯国家实验室、德国柏林联邦材料研究与测试研究。

(BAM)和伯明翰阿拉巴马大学从事教学或研究工作。他获得了以下荣誉:西北大学埃希巴赫杰出学者、美国能源部橡树岭国家实验室研究员、墨西哥新矿业技术研究所杰出研究员奖、伯明翰阿拉马尔大学总统优秀教学奖、美国矿石金属与材料学会(TMS)教育家奖。在1989 - 1990  年,他担任美国国家科学基金会(NSF)金属和陶瓷项目总监,同时也是国际材料学会(ASM international)研究员,还是《International Materials Reviews》杂志的编辑。

他的其他著作有:《陶瓷基复合材料(Ceramic Matrix Composites)》、《纤维材料( Fibrous Materials)》、《机械冶金( Mechanical Metallurgy)》(共同作者)、《机械冶金(Metalurgia Mecanica)》(共同作者)、《材料力学性能(Mechanical Behavior of Materials)》(共同作者)、《金属基复合材料(Metal Matrix Composites)》(共同作者)和《材料缺陷(Voids in Materials)》(共同作者)。

目录
1 Introduction
References

2 Reinforcements
2.1 Introduction
2.1.1 Flexibility
2.1.2 Fiber Spinning Processes
2.1.3 Stretching and Orientation
2.2 Glass Fibers
2.2.1 Fabrication
2.2.2 Structure
2.2.3 Properties and Applications
2.3 Boron Fibers
2.3.1 Fabrication
2.3.2 Structure and Morphology
2.3.3 Residual Stresses
2.3.4 Fracture Characteristics
2.3.5 Properties and Applications of Boron Fibers
2.4 Carbon Fibers
2.4.1 Processing
2.4.2 Structural Changes Occurring During Processing
2.4.3 Properties and Applications
2.5 Organic Fibers
2.5.1 Oriented Polyethylene Fibers
2.5.2 Aramid Fibers
2.6 Ceramic Fibers
2.6.1 Oxide Fibers
2.6.2 Nonoxide Fibers
2.7 Whiskers
2.8 Other Nonoxide Reinforcements
2.8.1 Silicon Carbide in a Particulate Form
2.8.2 Tungsten Carbide Particles
2.9 Effect of High-Temperature Exposure on the Strength of Ceramic Fibers
2.10 Comparison of Fibers
References

3 Matrix Materials
3.1 Polymers
3.1.1 Glass Transition Temperature
3.1.2 Thermoplastics and Thermosets
3.1.3 Copolymers
3.1.4 Molecular Weight
3.1.5 Degree of Crystallinity
3.1.6 Stress-Strain Behavior
3.1.7 Thermal Expansion
3.1.8 Fire Resistance or Flammability
3.1.9 Common Polymeric Matrix Materials
3.2 Metals
3.2.1 Structure
3.2.2 Conventional Strengthening Methods
3.2.3 Properties of Metals
3.2.4 Why Reinforcement of Metals?
3.3 Ceramic Matrix Materials
3.3.1 Bonding and Structure
3.3.2 Effect of Flaws on Strength
3.3.3 Common Ceramic Matrix Materials
References

4 Interfaces
4.1 Wettability
4.1.1 Effect of Surface Roughness
4.2 Crystallographic Nature of Interface
4.3 Interactions at the Interface
4.4 Types of Bonding at the Interface
4.4.1 Mechanical Bonding
4.4.2 Physical Bonding
4.4.3 Chemical Bonding
4.5 Optimum Interfacial Bond Strength
4.5.1 Very Weak Interface or Fiber Bundle(No Matrix)
4.5.2 Very Strong Interface
4.5.3 Optimum Interfacial Bond Strength
4.6 Tests for Measuring Interfacial Strength
4.6.1 Flexural Tests
4.6.2 Single Fiber Pullout Tests
4.6.3 Curved Neck Specimen Test
4.6.4 Instrumented Indentation Tests
4.6.5 Fragmentation Test
4.6.6 Laser Spallation Technique
References

Part II
5 Polymer Matrix Composites
5.1 Processing of PMCs
5.1.1 Processing of Thermoset Matrix Composites
5.1.2 Thermoplastic Matrix Composites
5.1.3 Sheet Molding Compound
5.1.4 Carbon Fiber Reinforced Polymer Composites
5.2 Interface in PMCs
5.2.1 Glass Fiber/Polymer
5.2.2 Carbon Fiber/Polymer Interface
5.2.3 Polyethylene Fiber/Polymer Interface
5.3 Structure and Properties of PMCs
5.3.1 Structural Defects in PMCs
5.3.2 Mechanical Properties
5.4 Applications
5.4.1 Pressure Vessels
5.5 Recycling of PMCs
References

6 Metal Matrix Composites
6.1 Types of Metal Matrix Composites
6.2 Important Metallic Matrices
6.2.1 Aluminum Alloys
6.2.2 Titanium Alloys
6.2.3 Magnesium Alloys
6.2.4 Copper
6.2.5 Intermetallic Compounds
Contents xix
6.3 Processing
6.3.1 Liquid-State Processes
6.3.2 Solid State Processes
6.3.3 In Situ Processes
6.4 Interfaces in Metal Matrix Composites
6.4.1 Major Discontinuities at Interfaces in MMCs
6.4.2 Interfacial Bonding in Metal Matrix Composites
6.5 Properties
6.5.1 Modulus
6.5.2 Strength
6.5.3 Thermal Characteristics
6.5.4 High Temperature Properties, Creep, and Fatigue
6.6 Applications
6.6.1 Electronic-Grade MMCs
6.6.2 Recycling of Metal Matrix Composites
References

7 Ceramic Matrix Composites
7.1 Processing of CMCs
7.1.1 Cold Pressing and Sintering
7.1.2 Hot Pressing
7.1.3 Reaction Bonding Processes
7.1.4 Infiltration
7.1.5 Directed Oxidation or the Lanxide[表情] Process
7.1.6 In Situ Chemical Reaction Techniques
7.1.7 Sol–Gel
7.1.8 Polymer Infiltration and Pyrolysis
7.1.9 Electrophoretic Deposition
7.1.10 Self-Propagating High-Temperature Synthesis
7.2 Interface in CMCs
7.3 Properties of CMCs
7.4 Toughness of CMCs
7.4.1 Crack Deflection at the Interface in a CMC
7.5 Thermal Shock Resistance
7.6 Applications of CMCs
7.6.1 Cutting Tool Inserts
7.6.2 Ceramic Composite Filters
7.6.3 Other Applications of CMCs
References

8 Carbon Fiber/Carbon Matrix Composites
8.1 Processing of Carbon/Carbon Composites
8.1.1 High Pressure Processing
8.2 Oxidation Protection of Carbon/Carbon Composites
8.3 Properties of Carbon/Carbon Composites
8.3.1 Thermal Properties
8.3.2 Frictional Properties of the Composites
8.3.3 Ablative Properties
8.4 Applications of Carbon/Carbon Composites
8.4.1 Carbon/Carbon Composite Brakes
8.4.2 Other Applications of Carbon/Carbon Composites
8.4.3 Carbon/SiC Brake Disks
References

9 Multifilamentary Superconducting Composites
9.1 The Problem of Flux Pinning
9.2 Types of Superconductor
9.3 Processing and Structure of Multifilamentary
Superconductors
9.3.1 Niobium–Titanium Alloys
9.3.2 A15 Superconductors
9.3.3 Ceramic Superconductors
9.4 Applications
9.4.1 Magnetic Resonance Imaging
References
Part III
10 Micromechanics of Composites
10.1 Density
10.2 Mechanical Properties
10.2.1 Prediction of Elastic Constants
10.2.2 Micromechanical Approaches
10.2.3 Halpin-Tsai Equations
10.2.4 Transverse Stresses
10.3 Thermal Properties
10.3.1 Expressions for Coefficients of Thermal
Expansion of Composites
10.3.2 Expressions for Thermal Conductivity
of Composites
10.3.3 Electrical Conductivity
10.3.4 Hygral and Thermal Stresses
10.3.5 Thermal Stresses in Fiber Reinforced Composites
10.3.6 Thermal Stresses in Particulate Composites
10.4 Mechanics of Load Transfer from Matrix to Fiber
10.4.1 Fiber Elastic–Matrix Elastic
10.4.2 Fiber Elastic–Matrix Plastic
10.5 Load Transfer in Particulate Composites
References

11 Macromechanics of Composites
11.1 Elastic Constants of an Isotropic Material
11.2 Elastic Constants of a Lamina
11.3 Relationships Between Engineering Constants
and Reduced Stiffnesses and Compliances
11.4 Variation of Lamina Properties with Orientation
11.5 Analysis of Laminated Composites
11.5.1 Basic Assumptions
11.5.2 Constitutive Relationships
for Laminated Composites
11.6 Stresses and Strains in Laminate Composites
11.7 Interlaminar Stresses and Edge Effects
References

12 Monotonic Strength and Fracture
12.1 Tensile Strength of Unidirectional Fiber Composites
12.2 Compressive Strength of Unidirectional Fiber Composites
12.3 Fracture Modes in Composites
12.3.1 Single and Multiple Fracture
12.3.2 Debonding, Fiber Pullout,
and Delamination Fracture
12.4 Effect of Variability of Fiber Strength
12.5 Strength of an Orthotropic Lamina
12.5.1 Maximum Stress Theory
12.5.2 Maximum Strain Criterion
12.5.3 Maximum Work (or the Tsai–Hill) Criterion
12.5.4 Quadratic Interaction Criterion
References

13 Fatigue and Creep
13.1 Fatigue
13.1.1 S–N Curves
13.1.2 Fatigue Crack Propagation
13.1.3 Damage Mechanics of Fatigue
13.1.4 Thermal Fatigue
13.2 Creep
13.3 Closure
References

14 Designing with Composites
14.1 General Philosophy
14.2 Advantages of Composites in Structural Design
14.2.1 Flexibility
14.2.2 Simplicity
14.2.3 Efficiency
14.2.4 Longevity
14.3 Some Fundamental Characteristics
of Fiber Reinforced Composites
14.4 Design Procedures with Composites
14.5 Hybrid Composite Systems
References

15 Nonconventional Composites
15.1 Nanocomposites
15.1.1 Polymer Clay Nanocomposites
15.2 Self-Healing Composites
15.3 Self-Reinforced Composites
15.4 Biocomposites
15.5 Laminates
15.5.1 Ceramic Laminates
15.5.2 Hybrid Composites
References

Appendix A Matrices
Appendix B Fiber Packing in Unidirectional Composites
Appendix C Some Important Units and Conversion Factors
Author Index
Subject Index

文章来源:http://www.chinacompositesexpo.com/cn/news.php?show=detail&c_id=288&news_id=4452