注册并扫描二维码
免费送会刊
科技前沿

复合材料英文经典著作(九)《热固性树脂手册》
来源:WHUT复材结构课题组  2016-09-27 11:30:00
本文阅读次数:985

原文:http://www.chinacompositesexpo.com/cn/news.php?show=detail&c_id=288&news_id=3692

编著:Debdatta Ratna
出版社: Smithers Rapra ,2009年出版

 

内容介绍:
        这是一本热固性树脂专著。热固性树脂作为一类重要的聚合物材料,它不同于热塑性塑料。其特征是通过固化反应将低分子量、易加工的液态树脂转化成固态的三维网状结构。热固性树脂与热塑性树脂相比其主要优点是可以通过简单地调整热固性树脂的网状交联密度获得范围宽泛的性能,而无需改变其化学结构。作者作为高分子学专业的学生和热固性树脂领域的研究者,觉得缺少一本热固性树脂内容完备的专著。在Smithers Rapra技术咨询公司出版我关于环氧树脂方面的评述报告(第185号)后,我受Frances Gardiner女士(英国Smithers Rapra技术咨询公司)邀请,决定将我所掌握的热固性树脂知识及长期的研究经验编撰成书,呈现给大家。我非常感谢Frances Gardiner女士和她团队的合作和鼓励。

        本书的主要内容是我受助于德国洪堡基金作为访问学者在德国凯泽斯劳滕技术大学复合材料所(IVW)工作时撰写的。J. Karger-Kocsis教授接收我在其研究室从事研究工作,在德国的研究过程中,我得到了他的悉心指导与鼓励。在我初入IVW时,托马斯·亚伯拉罕博士,当时为博士后研究员,为本书中大量的图表工作给予我很大帮助。在我IVW学术生涯的后期,Wanjale博士成为IVW的博士后,也对我给予了一定程度的帮助。感谢海军材料研究实验室(NMRL)主任Narayana Das博士,NMRL高分子分部的负责人B.C. Chakraborty博士,以及NMRL的其他同事的鼓励和支持。

        本书分为七章。第一章是对热固性树脂的概述,介绍了交联网络的概念、添加剂、表征热固性树脂的技术和仪器(仪器工作原理)。第2、3章对不同类型热固性树脂的化学、性能和应用展开讨论。第4、5章是关于提高热固性树脂断裂韧性的改性研究。第6和第7章分别讨论了热固性树脂基体复合材料和纳米复合材料。从热固性树脂的基础概念到最新研究进展,本书涵盖技术内容广泛。对于学术界、实验室、研究院及工业界的学生、研究人员、工程师与研发科技人员而言,我确信该书一定是一本非常有用的教科书与手册。对于科学家和研究人员,本书不仅用于打下扎实的专业基础,还可以指导未来的工作规划,因为本书不仅介绍了热固性树脂的最新进展,还指明了热固性树脂在各个领域未来的研究方向。本书丰富的信息,将成为通用热固性树脂领域进一步发展的源头,尤其是热固性纳米复合材料。

        我将本书献给我已故的父亲Lakshmikanta Ratna。我的岳母Snehalata Ratna、姐妹Sunilda和其他好心人的良好祝愿一直是我的工作动力和天堂之光,指引着我的创作。我非常感谢岳父Nirmalendu Sathpathi,他不仅给予我精神上的支持,还帮我编辑了书中内容。为了撰写本书,我花费了大量本应属于家人的珍贵时光。因此,衷心感谢我的妻子(Sujata)和儿子(Saptarshi and Debarshi),感谢你们的耐心,感谢你们一直是我灵感的源泉,没有你们就没有这本书。

Debdatta Ratna
于2009 夏
目录
1  General Introduction to Thermoset Networks
1.1  Introduction
1.2  Network Concept
1.3  Gelation
1.4  Cure Characteristics
1.5  Effect of Vitrification on Polymerisation Rate
1.6  Effect of Cure Conversion on Glass Transition Temperature (Tg)
1.7  Crosslinked Density (Xc)
1.8  Additives for Thermoset Resins
1.8.1  Antioxidants
1.8.2  Fillers
1.8.3  Blowing Agents
1.8.4  Coupling Agents
1.8.5  Surfactants
1.8.6  Colorants
1.8.7  Other Additives
1.9  Processing of Thermoset Resins
1.9.1  Die Casting
1.9.2  Rotational Casting
1.9.3  Compression Moulding
1.9.4  Reaction Injection Moulding Process (RIM)
1.10  Characterisation of Thermoset Resins
1.10.1  Titration
1.10.2  IR Spectroscopy
1.10.3  NMR Spectroscopy
1.10.4  Distribution of Molecular Weights
10.4.1  Viscometry
1.10.4.2  End-Group Analysis
1.10.4.3  Vapour Pressure Osmometry
1.10.4.4  Membrane Osmometry
1.10.4.5  Light Scattering
1.10.4.6  Gel Permeation Chromatography (GPC)
1.10.5  Morphological Characterisation
1.10.5.1  Scanning Electron Microscopy (SEM)
1.10.5.2  Transmission Electron Microscopy (TEM)
1.10.5.3  Atomic Force Microscopy (AFM)
1.10.5.4  X-ray Diffraction (XRD)
1.10.6  Thermal Analysis
1.10.6.1  Differential scanning Calorimetry (DSC)
1.10.6.2  Dynamic Mechanical Analysis (DMA)
1.10.6.3  Time–Temperature Superposition (TTS)
1.10.6.4  Thermogravimetric Analysis (TGA)
1.10.7  Rheological Characterisation
1.11  Testing and Evaluation of Thermoset Resins
1.11.1  Mechanical Properties
1.11.1.1  Tensile Test
1.11.1.2  Flexural Test
1.11.1.3  Creep Test
1.10.1.4  Fatigue Test
1.11.2  Fracture Toughness (K1c)
1.11.3  Impact Test
1.11.3.1  Pendulum Impact Test
1.11.3.2  Falling Weight Impact Test
1.11.4  Heat Distortion Temperature (HDT)
1.11.5  Electrical Properties
1.11.5.1  Electrical Conductivity
1.11.5.2  Dielectric strength
1.11.5.3  Arc resistance
1.11.6  Flammability and Smoke Tests

2  Chemistry, Properties and Applications of Thermoset Resins Introduction
2.1  Phenolic resins
2.1.1  Novolac
2.1.2  Synthesis of Resole
2.1.3  Difference Between Novolac and Resole
2.1.4  Characterisation of Phenolic Resin
2.1.5  Crosslinking of Phenolic Resins
2.1.6  Properties of Phenolic Resins
2.1.7  Applications of Phenolic Resins
2.1.8  Phenolic Resin as Additives
2.1.8.1  Additives for Rubber
2.1.8.2  Modifier for Poly(Ethylene Oxide) (PEO)
2.2  Amino Resins
2.3  Furan Resins
2.4  Epoxy Resins
2.5  Unsaturated Polyester Resins
2.5.1  Unsaturated Polyesters
2.5.2  Polyester Structure
2.5.3  Polyesterification Kinetics
2.5.4  Types of Polyester
2.5.4.1  General Purpose Resin
2.5.4.2  Speciality Polyester Resins
2.5.5  Reactive Diluents or Monomers
2.5.6  Inhibitors
2.5.7  Curing of UPE Resin
2.5.8  Properties of UPE Resins
2.5.9  Application of UPE Resin
2.6  Vinyl Ester (VE) Resins
2.6.1  Properties of VE Resins
2.6.2  Applications of VE Resins
2.7  PU
2.7.1  Polyols
2.7.2  Isocyanates
2.7.3  PrePolymers
2.7.4  Extenders
2.7.5  Application of PU Resins
2.7.5.1  General Applications
2.7.5.2  Shape Memory Applications
2.7.5.3  Shape Memory PU
2.8  Polyimides
2.8.1  Addition polyimides
2.8.2  In situ Polymerisation of Monomeric Reactants (PMR)
2.8.3  Crosslinking of polyimides
2.8.4  Curing of Polyimide Resins
2.8.5  Application of Polyimide Resins
2.9  Bismaleimide Resins
2.9.1  Curing of Bismaleimides
2.9.2  Properties of Bismaleimide Resins
2.9.3  Applications of Bismaleimide Resins
2.10  Cyanate Ester Resins
2.10.1  Curing of CE resin
2.10.2  Properties of CE resins
2.10.3  Applications of CE resins

3  Epoxy Resins 
3.1  Analysis and Characterisation of Epoxy Resins
3.1.1  Determination of Epoxy Equivalent
3.1.2  Spectroscopic Characterisation
3.1.3  Solubility Parameter
3.2  Epoxy Formulation
3.2.1  Curing Agents
3.3  Gelation and Vitrification
3.4  Thermomechanical Properties
3.5  Chiral epoxy resins
3.6  Liquid crystalline epoxy
3.7  Rubbery epoxy
3.8  Applications of epoxy resin
3.8.1  Vibration damping applications

4  Toughened Thermoset Resins
4.1  Toughening of Thermoplastics
4.1.1  Mechanism of Toughening of Brittle Polymers
4.1.1.1  Shear Yielding190
4.1.1.2  Rubber Cavitation
4.1.1.3  Crazing
4.1.2  Morphological Aspects
4.2  Toughening of Thermosets
4.3  Liquid Rubber Toughening
4.3.1  Reaction-Induced Phase Separation
4.3.2  Mechanism of Toughening of Thermosets
4.3.2.1  Rubber Bridging and Tearing
4.3.2.2  Crazing
4.3.2.3  Shear Yielding and Crazing
4.3.2.4  Cavitation and Shear Yielding
4.3.3  Microstructural Features
4.3.3.1  Volume Fraction
4.3.3.2  Particle Size
4.3.3.3  Matrix Ligament Thickness (MLT)
4.3.3.4  Interfacial Adhesion
4.4  Toughening of Vinyl Ester (VE) Resins
4.4.1  Liquid Rubber Toughening
4.5  Modification of unsaturated polyester (UPE) resins
4.6  Toughening of phenolic resins
4.7  Toughening of polyimide, bismaleimide and cyanate 
ester resins
5  Toughened Epoxy Resins
5.1  Chemical Modification
5.2  Rubber TougheningThermoset Resins
5.2.1  Commercial Toughening Agents
5.2.2  Rubber-based Toughening Agents
5.2.2  Acrylate-Based Toughening Agents
5.2.2.1  Synthesis of Functionalised Acrylate Rubbers
5.2.2.2  Acrylate-Modified Epoxy
5.2.3  Hyperbranched polymer (HBP) - based toughening agents
5.3  Core-Shell Particle Toughening
5.4  Thermoplastic Toughening
5.4.1  Engineering Thermoplastics
5.4.2  Amorphous Thermoplastics
5.4.3  Crystalline Thermoplastics
5.4.4  Morphology and Microstructural Aspects
5.4.5  Mechanism of Toughening
5.4.6  Effect of Matrix Crosslink Density
5.6  Rigid Particle Toughening of Epoxy
5.7  Summary and Conclusion

6  Thermoset Composites
Introduction
6.1  Constituents of FRP Composites
6.2  Composite Interface
6.2.1  Surface Tension and Contact Angle
6.2.2  Fibre Surface Treatment
6.2.2.1  Glass Fibre
6.2.2.2  Carbon Fibre
6.2.2.3  Polymeric Fibre
6.3  Processing of Composites
6.3.1  Contact Moulding
6.3.2  Compression Moulding
6.3.3  Resin Transfer Moulding
6.3.4  Reaction Injection Moulding (RIM)
6.3.5  Pultrusion
6.3.6  Filament Winding
6.3.7  Prepreg Moulding
6.3.7.1  Prepreg
6.3.7.2  Moulding of Prepregs
6.4  Analysis and Testing of Composites
6.4.1  Determination of Glass Content
6.4.2  Mechanical Testing of Composites
6.4.3  Interlaminar Shear Stress (ILSS)
6.5  Prediction of Composite Strength and Rigidity
6.6  Thermomechanical Properties of Thermoset Composites 6.6.1  Thermal Properties
6.6.2  Mechanical Properties
6.7  Toughened Composites
6.7.1  Resin Toughening

7  Thermoset Nanocomposites Introduction
7  Themoset Nanocomposites7.1  Thermoset/clay nanocomposites
7.1.1  Principle of polymer/clay nanocomposite formation 7.1.2  Methods of nanocomposite synthesis
7.1.3  Characterisation of PCN
7.1.4  Controlling Factors for nanocomposite formation 7.1.6  Properties of PCN
7.2  POSS and silica-based nanocomposites
7.3  Block copolymer-based nanocomposite
7.4  CNT-based nanocomposites
7.5  Nanoreinforcement and toughening
7.6  Nanotechnology and flammability
7.6.1  Mechanism of flame retardancy
7.6.2  Conventional flame retardants
7.6.2.1  Inorganic flame retardants
7.6.2.2  Halogen containing flame retardants
7.6.2.3  Phopshorus Containing Flame Retardant
7.6.2.4  Nanoclay Based Flame Retardant
7.6.2.5  Combination Organoclay and Other  Flame-Retardants
7.7  Application of nanocomposites
7.8  Summary and Outlook
 

文章来源:http://www.chinacompositesexpo.com/cn/news.php?show=detail&c_id=288&news_id=3692